THE PERFORMANCE ANALYSIS OF THE POST-MISSION WEB-BASED STATIC AND KINEMATIC PPP-AR SERVICE

Author:

Mutlu Bilal,Erol Serdar,Alkan Reha Metin

Abstract

The use of the Precise Point Positioning (PPP) technique has become very advantageous with the development of GNSS positioning technology. It is possible to get highly accurate position information without the need of any reference station data using the PPP technique. However, there are various factors that affect the accuracy of PPP solutions, including the initial phase ambiguity solution type, which can be fixed or float, atmospheric effects, observation length, used satellite systems, and used precise products. The Canadian Spatial Reference System-Precise Point Positioning (CSRS-PPP) service, one of the online PPP services, was updated on October 20th, 2020, and upgraded to version 3, capable of the Ambiguity-Fixed (PPP-AR) solution. Prior to this date, the service had offered the Ambiguity-Float (PPP-Float) solution. In this study, it is aimed to investigate the effect of using different satellite systems (GPS, GPS&GLONASS), length of observation time, static/kinematic processing modes, and initial phase ambiguity solution types on PPP accuracy. The daily observation data of ANKR, ISTA, IZMI, MERS, and KRS1 IGS GNSS stations located within the borders of Türkiye, divided into different sub-sessions (1-hour, 2-hours, 4-hours, 8-hours, and 12-hours) were processed using CSRS-PPP web-based service as PPP-Float before the update and PPP-AR after the update. As a result of the comparison, the combined use of GPS & GLONASS satellite systems instead of using GPS satellites alone has increased horizontal and vertical accuracy in both static/kinematic PPP-Float and PPP-AR solutions. Considering the static solutions, horizontal and vertical position accuracies increase as the observation time increases in both ambiguity solution methods using different constellations. In the case of comparison of the ambiguity solution methods, it was found that the PPP-AR approach offered higher accuracy than the PPP-Float in all solution cases.

Publisher

Faculty of Mining, Geology and Petroleum Engineering

Subject

General Earth and Planetary Sciences,Geology,General Energy,Geotechnical Engineering and Engineering Geology,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3