DISSOLUTION KINETICS OF A COPPER OXIDE ORE SAMPLE AND OPTIMIZING THE EFFECTIVE PARAMETERS, USING RESPONSE SURFACE METHODOLOGY

Author:

Maleki Hassan,Chehreghani Sajjad,Noaparast Mohammad,Mirmohammadi Mir Saleh,Ghanbarzad Minoo

Abstract

In this research work, the leaching behavior of a copper oxide ore sample prepared from the Qaleh-Zari copper mine with a very high grade of 5.4% Cu (malachite and azurite) was investigated to evaluate the effects of significant operating parameters on copper recovery, including sulfuric acid concentration, solid percentage, particle size and agitation speed. Then, response surface methodology (RSM) and central composite design (CCD) were employed to optimize the leaching process and assess interactions between the effective parameters. In order to further analyze the leaching behavior, kinetics of copper dissolution was studied on the basis of the shrinking core models (SCM). The results showed a reduction in the rate of recovery with an increase in the solid percentage and/or particle size. In contrast, any increase in the agitation speed and/or acid concentration was found to improve the recovery. It was remarkable that increasing the sulfuric acid content, beyond a certain level, imposed no significant effect on the recovery. Optimal copper recovery was obtained with a solid percentage, agitation speed, particle size, and sulfuric acid concentration of 25.12%, 586 rpm, 70 μm, and 12.5%, respectively, leading to a recovery of 93.24%. A study on the leaching kinetics indicated that the dissolution rate was controlled by the fluid diffusion from product layer model with 30.71 kJ/mol of activation energy.

Publisher

Faculty of Mining, Geology and Petroleum Engineering

Subject

General Earth and Planetary Sciences,Geology,General Energy,Geotechnical Engineering and Engineering Geology,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3