POWER CONSUMPTION MANAGEMENT AND SIMULATION OF OPTIMIZED OPERATIONAL CONDITIONS OF BALL MILLS USING THE MORRELL POWER MODEL: A CASE STUDY

Author:

Chehreghani Sajjad,Hosseinzadeh Gharehgheshlagh Hojjat,Haghikia Sahand

Abstract

The amount of comminution or fineness of minerals in a mill can be described by various parameters, the most important of which is d80 (80% passing size). The purpose of this study is to investigate and simulate the optimal operating conditions of a ball mill in a copper processing plant. The actual operating conditions in the intended mill are performed with a 300 tph tonnage, a 267 second retention time, and a discharge d80 = 53 μm. Laboratory studies showed that the optimal economical and metallurgical recovery of copper in this plant is achieved in 65 μm ≤ d80 ≤ 75 μm with Flotation Recovery (R) = 90.16%, Economical Efficiency (EE) = 93.04% and Separation Efficiency (SE) = 88.64%. In this study, having the optimal d80 for the concentration unit, the mill data, and utilizing Excel Software and the Morrell method, first the total power for the optimal set of d80 was calculated, which is equal to 7790 to 8005 kW. Then, according to these power values, the corresponding retention times were calculated, which are equal to 236 and 247 seconds respectively. Finally, utilizing the retention time-tonnage relationship and taking into account the specific filling of the mill, the optimal corresponding tonnages to the obtained retention times were calculated, ranging from 324 to 340 tph. The results of these studies showed that by reducing the level of comminution from d80 = 53 μm to 65 μm ≤ d80 ≤ 75 μm, in addition to increasing flotation efficiency to R = 90.16%, EE = 93.04% and SE = 88.64%, about 4.21% to 7.09% energy savings and an 8.00% to 13.33% tonnage increase will occur.

Publisher

Faculty of Mining, Geology and Petroleum Engineering

Subject

General Earth and Planetary Sciences,Geology,General Energy,Geotechnical Engineering and Engineering Geology,Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3