GEOPHYSICAL INVESTIGATIONS OF A POTENTIAL LANDSLIDE AREA IN MAYOON, HUNZA DISTRICT, GILGIT-BALTISTAN, PAKISTAN
-
Published:2021
Issue:3
Volume:36
Page:127-141
-
ISSN:1849-0409
-
Container-title:Rudarsko-geološko-naftni zbornik
-
language:
-
Short-container-title:MGPB
Author:
ur Rehman Qasim,Ahmed Waqas,Waseem Muhammad,Khan Sarfraz,Farid Asam,Shah Syed Husnain Ali
Abstract
The Mayoon landslide in the Hunza District is a slowly developed, non-catastrophic landslide that has gained its importance in the last few years after its rapid activation and fast slip rate. The area is characterized by high earthquake hazards (zone 3 with a peak ground acceleration value of 2.4–3.2 m/s2) by the Building Code of Pakistan due to frequent earth quakes. The past high earthquake activity in the area has displaced the foliated rocks towards the south and is responsible for opening the bedrock joints. The head and body of the landslide are covered by unconsolidated material and have fractures of varying lengths and widths. The non-invasive geophysical techniques, including Ground Penetrating Radar (GPR) and Electrical Resistivity Soundings (ERS), are deployed to evaluate the Mayoon landslide subsurface. The subsurface is interpreted into a two-layer model. Bright reflectors and highly variable resistivity characterize the top layer (Layer-1). This layer is associated with a loose, highly heterogeneous, fragmented material deposited under glacial settings over the existing bedrock. Hyperbolic reflections and intermediate resistivity characterize the bottom layer (Layer-2). This layer is associated with foliated metamorphic bedrock. The hyperbolic reflections show faults/fractures within the bedrock. The extension of these fractures/faults with depth is uncertain due to decay in the GPR signal with depth. The intermediate resistivity shows the bedrock is weathered and foliated. Reflections within Layer-1 have disrupted directly above the fractures/faults suggesting a possible movement. A bright reflection between the two layers highlights the presence of the debonded surface. Loose material within Layer-1 coupled with debonding possesses a significant hazard to generate a landslide under unfavourable conditions, such as an intense rainstorm or earthquake activity.
Publisher
Faculty of Mining, Geology and Petroleum Engineering
Subject
General Earth and Planetary Sciences,Geology,General Energy,Geotechnical Engineering and Engineering Geology,Water Science and Technology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献