The simultaneous effect of moisture and pyrite on coal spontaneous combustion using CPT and R70 test methods

Author:

Saffari Amir,Sereshki Farhang,Ataei Mohammad

Abstract

Among fossil fuels, coal is the most widely used all over the world for generating power and electricity and it is a stable source of energy. Despite all these benefits, coal mining has serious hazards, such as coal spontaneous combustion. There are many factors that influence the tendency for coal to spontaneously combust in coal mines. Pyrite can promote the risk of this phenomenon. This promotion is accelerated by the combination of pyrite and moisture content at the same time. This combination is very rarely discussed in literature. So, in this research, the accelerating effect of reactive pyrite and moisture content on coal spontaneous combustion was measured experimentally using crossing point temperature (CPT) and R70 test methods. For this purpose, a new experimental apparatus was assembled and made in Iran. Reaction rate data obtained from the experimental results showed that pyrite has a twofold action. It first catalyzes the oxidation reaction. Then, in a moist environment, pyrite is itself oxidized, which provides a secondary heat source, and so accelerates the process of coal spontaneous combustion. Since the pyrite oxidation reaction consumes moisture, there is a mutual effect of accelerated heating as less heat is used up in moisture evaporation. The results show that pyrite content can linearly accelerate the coal spontaneous combustion process, while moisture content under 20% increases it, and if the moisture exceeds 20%, the rate of this process is reduced. The results of this research are helpful in the assessment and management of coal spontaneous combustion issues in coal mines.

Publisher

Faculty of Mining, Geology and Petroleum Engineering

Subject

General Earth and Planetary Sciences,Geology,General Energy,Geotechnical Engineering and Engineering Geology,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3