Observation of Phonon Propagation in Germanium Nanowires Using Femtosecond Pump–Probe Microscopy
Author:
Affiliation:
1. Department of Chemistry, Caudill Laboratories, University of North Carolina at Chapel Hill, Chapel Hill 27599-3290, North Carolina, United States
Funder
North Carolina Space Grant
David and Lucile Packard Foundation
National Science Foundation
Publisher
American Chemical Society (ACS)
Subject
Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Biotechnology,Electronic, Optical and Magnetic Materials
Link
https://pubs.acs.org/doi/pdf/10.1021/acsphotonics.8b01736
Reference62 articles.
1. Ultrafast Carrier Dynamics of Silicon Nanowire Ensembles: The Impact of Geometrical Heterogeneity on Charge Carrier Lifetime
2. Probing Intrawire, Interwire, and Diameter-Dependent Variations in Silicon Nanowire Surface Trap Density with Pump–Probe Microscopy
3. Ultrafast Electron and Hole Dynamics in Germanium Nanowires
4. Ultrafast Carrier Dynamics in Individual Silicon Nanowires: Characterization of Diameter-Dependent Carrier Lifetime and Surface Recombination with Pump–Probe Microscopy
5. Ultrafast Electron and Phonon Response of Oriented and Diameter-Controlled Germanium Nanowire Arrays
Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Coherent acoustic phonon transport in optophononic waveguides;Nanophotonics X;2024-06-10
2. Quantifying noise effects in optical measures of excited state transport;The Journal of Chemical Physics;2024-03-22
3. Ultrafast investigation of thermomechanical energy transfer in InAs nanowires;2023 IEEE Nanotechnology Materials and Devices Conference (NMDC);2023-10-22
4. Ultrafast microscopy and image segmentation of spatially heterogeneous excited state and trap passivation in Cu2BaSnSSe3;Cell Reports Physical Science;2023-10
5. Ultrafast, high resolution spatiotemporal mapping of energy transport dynamics for determination of energy transport properties in silicon;Physical Review B;2023-09-14
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3