Super-Hydrophilic Hierarchical Ni-Foam-Graphene-Carbon Nanotubes-Ni2P–CuP2 Nano-Architecture as Efficient Electrocatalyst for Overall Water Splitting
Author:
Affiliation:
1. Institute of Nano Science & Technology, Knowledge City, Sector-81, SAS Nagar, Manauli PO 140306, Punjab, India
2. Department of Applied Chemistry, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya 468-8502, Japan
Funder
Science and Engineering Research Board
Department of Science and Technology, India
Publisher
American Chemical Society (ACS)
Subject
General Physics and Astronomy,General Engineering,General Materials Science
Link
https://pubs.acs.org/doi/pdf/10.1021/acsnano.1c00647
Reference70 articles.
1. What would it take for renewably powered electrosynthesis to displace petrochemical processes?
2. Opportunities and challenges for a sustainable energy future
3. Powering the planet: Chemical challenges in solar energy utilization
4. Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends
5. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications
Cited by 249 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Benchmarking stable Electrocatalysts for green hydrogen production: A chemist perspective;Coordination Chemistry Reviews;2024-12
2. Structural engineering evoked multifunctionality in molybdate nanosheets for industrial oxygen evolution and dual energy storage devices inspired by multi-method calculations;Journal of Colloid and Interface Science;2024-12
3. Waxberry-like hydrophilic Co-doped ZnFe2O4 as bifunctional electrocatalysts for water splitting;Journal of Colloid and Interface Science;2024-12
4. α-Bi2O3 tubular rods coated on Bi2O2CO3 nanosheets for high-performance asymmetric supercapacitor applications;Journal of Solid State Chemistry;2024-12
5. Oriented construction of lignin-derived carbon hybrid electrocatalyst with superwettable surface and Co-based heterostructure for overall water splitting;Microporous and Mesoporous Materials;2024-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3