Molecular Descriptors for Effective Classification of Biologically Active Compounds Based on Principal Component Analysis Identified by a Genetic Algorithm
Author:
Affiliation:
1. New Chemical Entities, Inc., 18804 North Creek Parkway, Suite 100, Bothell, Washington 98011, and Department of Biological Structure, University of Washington, Seattle, Washington 98195
Publisher
American Chemical Society (ACS)
Subject
Computational Theory and Mathematics,Computer Science Applications,Information Systems,General Chemistry
Link
https://pubs.acs.org/doi/pdf/10.1021/ci000322m
Reference31 articles.
1. Computer storage and retrieval of generic chemical structures in patents. 7. Parallel simulation of a relaxation algorithm for chemical substructure search
2. Clustering a large number of compounds. 1. Establishing the method on an initial sample
3. Clustering of chemical structures on the basis of two-dimensional similarity measures
4. Enhancing the diversity of a corporate database using chemical database clustering and analysis
5. Use of Structure−Activity Data To Compare Structure-Based Clustering Methods and Descriptors for Use in Compound Selection
Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Modeling the toxicity of pollutants mixtures for risk assessment: a review;Environmental Chemistry Letters;2021-01-03
2. Statistical methods and parameters: Tools to generate and evaluate theoretical in silico models;Concepts and Experimental Protocols of Modelling and Informatics in Drug Design;2021
3. The impact of chemoinformatics on drug discovery in the pharmaceutical industry;Expert Opinion on Drug Discovery;2020-01-22
4. The Application of CA and PCA to the Evaluation of Lipophilicity and Physicochemical Properties of Tetracyclic Diazaphenothiazine Derivatives;Journal of Analytical Methods in Chemistry;2019-10-20
5. A review on machine learning methods forin silicotoxicity prediction;Journal of Environmental Science and Health, Part C;2018-10-02
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3