Assessment of Predicting Frontier Orbital Energies for Small Organic Molecules Using Knowledge-Based and Structural Information
Author:
Affiliation:
1. Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
2. Department of Computer Science and Information Engineering, National Taiwan Normal University, Taipei 11677, Taiwan
Funder
Ministry of Science and Technology, Taiwan
Publisher
American Chemical Society (ACS)
Subject
General Earth and Planetary Sciences,General Environmental Science
Link
https://pubs.acs.org/doi/pdf/10.1021/acsengineeringau.2c00011
Reference44 articles.
1. First principles view on chemical compound space: Gaining rigorous atomistic control of molecular properties
2. Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space
3. Many Molecular Properties from One Kernel in Chemical Space
4. Accelerated materials property predictions and design using motif-based fingerprints
5. Learning from the Harvard Clean Energy Project: The Use of Neural Networks to Accelerate Materials Discovery
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Photoelectrochemical intensified efficient phosphorus recovery from hypophosphite and sulfadiazine co-contaminated wastewater by blue TiO2 nanotube arrays anode;Separation and Purification Technology;2024-12
2. Review of deep learning algorithms in molecular simulations and perspective applications on petroleum engineering;Geoscience Frontiers;2024-03
3. Enhanced Predictions for the Experimental Photophysical Data Using the Featurized Schnet-Bondstep Approach;Journal of Chemical Theory and Computation;2023-05-01
4. Machine Learning Frontier Orbital Energies of Nanodiamonds;Journal of Chemical Theory and Computation;2023-04-13
5. Efficient exploration of transition-metal decorated MXene for carbon monoxide sensing using integrated active learning and density functional theory;Physical Chemistry Chemical Physics;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3