Spindle-Shaped Surface Microstructure Inspired by Directional Water Collection Biosystems to Enhance Interfacial Wetting and Bonding Strength
Author:
Affiliation:
1. School of Mechanical Engineering, Tongji University, Shanghai 201804, China
2. General Motors Global Research & Development, Warren, Michigan 48092, United States
Funder
Ministry of Education of the People's Republic of China
General Motors Corporation
Publisher
American Chemical Society (ACS)
Subject
General Materials Science
Link
https://pubs.acs.org/doi/pdf/10.1021/acsami.0c21857
Reference38 articles.
1. Bio-inspired and optimized interlocking features for strengthening metal/polymer interfaces in additively manufactured prostheses
2. Bioinspired Mechanically Interlocking Structures
3. Light-Induced Nanowetting: Erasable and Rewritable Polymer Nanoarrays via Solid-to-Liquid Transitions
4. Polymer electrolytes and interfaces toward solid-state batteries: Recent advances and prospects
5. Laser Ablative Surface Treatment for Enhanced Bonding of Ti-6Al-4V Alloy
Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Investigation on anisotropic toughness and cracking behavior of woven lay-up Fiber Metal Laminates with two-level customized interfaces;Composites Science and Technology;2024-09
2. Dominant role of laser-generated nano-structures on enhancement of interfacial bonding strength by laser surface modification;Applied Surface Science;2024-06
3. Laser-induced selective wettability transition of 6061 aluminum alloy surfaces;Journal of Mechanical Science and Technology;2024-04
4. Constructing a highly permeable bioinspired rigid-flexible coupled membrane with a high content of spindle-type MOF: efficient adsorption separation of water-soluble pollutants;Journal of Materials Chemistry A;2024
5. Constructing a Highly Permeable Bioinspired Rigid-Flexible Coupled Membrane with a High Content of Spindle-Type Mof Integration: Efficient Separation of Water-Soluble Pollutants;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3