Machine Learning Models of Antibody–Excipient Preferential Interactions for Use in Computational Formulation Design
Author:
Affiliation:
1. Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
2. Dosage Form Design and Development, AstraZeneca, Gaithersburg, Maryland 20878, United States
Funder
AstraZeneca
Publisher
American Chemical Society (ACS)
Subject
Drug Discovery,Pharmaceutical Science,Molecular Medicine
Link
https://pubs.acs.org/doi/pdf/10.1021/acs.molpharmaceut.0c00629
Reference55 articles.
1. Protein–excipient interactions: Mechanisms and biophysical characterization applied to protein formulation development
2. Formulation and delivery issues for monoclonal antibody therapeutics
3. Predictive Screening Tools Used in High-Concentration Protein Formulation Development
4. Critical considerations in the formulation development of parenteral biologic drugs
5. Concentration Dependent Viscosity of Monoclonal Antibody Solutions: Explaining Experimental Behavior in Terms of Molecular Properties
Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Opportunities and Challenges of Artificial Intelligence ( AI ) in Drug Delivery;Exploring Computational Pharmaceutics ‐ AI and Modeling in Pharma 4.0;2024-06-21
2. Prediction and analysis etching model of anti-glare glass roughness based on machine learning method;Chemical Engineering Research and Design;2024-05
3. The search for novel proline analogs for viscosity reduction and stabilization of highly concentrated monoclonal antibody solutions;International Journal of Pharmaceutics;2024-04
4. Combinations of arginine and pullulan reveal the selective effect of stabilization mechanisms on different lyophilized proteins;International Journal of Pharmaceutics;2024-04
5. Applications of machine learning in antibody discovery, process development, manufacturing and formulation: Current trends, challenges, and opportunities;Computers & Chemical Engineering;2024-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3