1. Graph neural networks: A review of methods and applications
2. MoleculeNet: a benchmark for molecular machine learning
3. Schütt, K. T.; Kindermans, P.J.; Sauceda, H. E.; Chmiela, S.; Tkatchenko, A.; Müller, K.R. SchNet: A Continuous-Filter Convolutional Neural Network for Modeling Quantum Interactions. ArXiv170608566 Phys. Stat. 2017.
4. Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; Dahl, G. E. Neural Message Passing for Quantum Chemistry. In Proceedings of the 34th International Conference on Machine Learning; PMLR, 2017; pp 1263–1272.
5. Klicpera, J.; Gross, J.; Günnemann, S. Directional Message Passing for Molecular Graphs. ArXiv200303123 Phys. Stat. 2020.