Multiview Joint Learning-Based Method for Identifying Small-Molecule-Associated MiRNAs by Integrating Pharmacological, Genomics, and Network Knowledge
Author:
Affiliation:
1. College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
2. School of Computer Science, University of South China, Hengyang 421001, China
Funder
University of South China
National Natural Science Foundation of China
Publisher
American Chemical Society (ACS)
Subject
Library and Information Sciences,Computer Science Applications,General Chemical Engineering,General Chemistry
Link
https://pubs.acs.org/doi/pdf/10.1021/acs.jcim.0c00244
Reference66 articles.
1. Predicting new molecular targets for known drugs
2. A comprehensive map of molecular drug targets
3. The Tuberculosis Drug Streptomycin as a Potential Cancer Therapeutic: Inhibition of miR-21 Function by Directly Targeting Its Precursor
4. MicroRNAs -the Next Generation Therapeutic Targets in Human Diseases
5. Hesse, M.; Arenz, C. miRNAs as Novel Therapeutic Targets and Diagnostic Biomarkers for Parkinson’s Disease: A Patent Evaluation of Expert Opinion on Therapeutic Patents. WO Patent WO20140186502014; pp 1271 1276.
Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Dual-neighbourhood information aggregation and feature fusion for prediction of miRNA–disease association;Computers in Biology and Medicine;2024-10
2. HTFSMMA: Higher-Order Topological Guided Small Molecule–MicroRNA Associations Prediction;Journal of Computational Biology;2024-09-01
3. SMTRI: A deep learning-based web service for predicting small molecules that target miRNA-mRNA interactions;Molecular Therapy - Nucleic Acids;2024-09
4. Reliable method for predicting the binding affinity of RNA-small molecule interactions using machine learning;Briefings in Bioinformatics;2024-01-22
5. Multitask joint learning with graph autoencoders for predicting potential MiRNA-drug associations;Artificial Intelligence in Medicine;2023-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3