Predicting Thermodynamic Properties of Alkanes by High-Throughput Force Field Simulation and Machine Learning
Author:
Affiliation:
1. School of Chemistry and Chemical Engineering, Materials Genome Initiative Center, and Key Laboratory of Scientific and Engineering Computing of Ministry of Education, Shanghai Jiao Tong University, Shanghai, China 200240
Funder
Ministry of Science and Technology of the People's Republic of China
National Natural Science Foundation of China
Publisher
American Chemical Society (ACS)
Subject
Library and Information Sciences,Computer Science Applications,General Chemical Engineering,General Chemistry
Link
https://pubs.acs.org/doi/pdf/10.1021/acs.jcim.8b00407
Reference60 articles.
1. Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science
2. Industrial Fluid Properties Simulation Challenge. http://www.fluidproperties.org/ (accessed Mar. 2018).
3. The first industrial fluid properties simulation challenge
4. The Eighth Industrial Fluids Properties Simulation Challenge
5. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids
Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Efficient search of molecular interaction parameters for polar liquids;Molecular Physics;2024-04-26
2. Modelling of chemical processes using artificial neural network;Indian Chemical Engineer;2023-12-19
3. Exploring the role of microbial proteins in controlling environmental pollutants based on molecular simulation;Science of The Total Environment;2023-12
4. Interpretable Machine Learning-Based Model to Classify and Optimize Isoperibolic Batch Reactors;Industrial & Engineering Chemistry Research;2023-11-02
5. Efficient Exploration of Chemical Compound Space Using Active Learning for Prediction of Thermodynamic Properties of Alkane Molecules;Journal of Chemical Information and Modeling;2023-10-19
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3