Predicting Toxicities of Diverse Chemical Pesticides in Multiple Avian Species Using Tree-Based QSAR Approaches for Regulatory Purposes
Author:
Affiliation:
1. Kan Ban Systems Pvt. Ltd., Laxmi Nagar, Delhi 110092, India
2. Environmental Chemistry Division, CSIR-Indian Institute of Toxicology Research, Post Box 80, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226 001, India
Funder
Council of Scientific and Industrial Research
Publisher
American Chemical Society (ACS)
Subject
Library and Information Sciences,Computer Science Applications,General Chemical Engineering,General Chemistry
Link
https://pubs.acs.org/doi/pdf/10.1021/acs.jcim.5b00139
Reference71 articles.
1. QSTR Modeling for Qualitative and Quantitative Toxicity Predictions of Diverse Chemical Pesticides in Honey Bee for Regulatory Purposes
2. Impact of pesticides use in agriculture: their benefits and hazards
3. Pesticides and human chronic diseases: Evidences, mechanisms, and perspectives
4. A QSAR Study of Avian Oral Toxicity using Support Vector Machines and Genetic Algorithms
5. In silico prediction of chemical toxicity on avian species using chemical category approaches
Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Comprehensive ecotoxicological assessment of pesticides on multiple avian species: Employing quantitative structure-toxicity relationship (QSTR) modeling and read-across;Process Safety and Environmental Protection;2024-08
2. Ecotoxicological risk assessment of pesticides against different aquatic and terrestrial species: using mechanistic QSTR and iQSTTR modelling approaches to fill the toxicity data gap;Green Chemistry;2024
3. In silico environmental risk assessment improves efficiency for pesticide safety management;Science of The Total Environment;2024-01
4. Predictionof Environmental FateandToxicityofInsecticidesUsing Multi‐Target QSAR Approach;Chemistry & Biodiversity;2023-12-18
5. The Bigger Fish: A Comparison of Meta-Learning QSAR Models on Low-Resourced Aquatic Toxicity Regression Tasks;Environmental Science & Technology;2023-06-14
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3