Wettability Transition of the Picosecond Laser-Ablated 304 Stainless-Steel Surface via Low-Vacuum Heat Treatment
Author:
Affiliation:
1. College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing 210031, Jiangsu, China
Funder
Government of Jiangsu Province
National Natural Science Foundation of China
the Fundamental Research Funds for the Central Universities
Publisher
American Chemical Society (ACS)
Subject
Electrochemistry,Spectroscopy,Surfaces and Interfaces,Condensed Matter Physics,General Materials Science
Link
https://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.1c02180
Reference32 articles.
1. A simple way to achieve bioinspired hybrid wettability surface with micro/nanopatterns for efficient fog collection
2. Enhancing Dropwise Condensation through Bioinspired Wettability Patterning
3. Anisotropic Wetting on Microstrips Surface Fabricated by Femtosecond Laser
4. Nepenthes Inspired Design of Self-Repairing Omniphobic Slippery Liquid Infused Porous Surface (SLIPS) by Femtosecond Laser Direct Writing
5. Transition from superhydrophilic to superhydrophobic state of laser textured stainless steel surface and its effect on corrosion resistance
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Construction of superhydrophobic tungsten carbide via laser processing and its thermal, chemical and mechanical properties;Surface and Coatings Technology;2024-07
2. Laser-induced plasma micromachining on surfaces parallel to the incident laser in different solutions;Optics Express;2024-04-23
3. Advances in organic adsorption on hydrophilic hierarchical structures for bionic superhydrophobicity: from fundamentals to applications;Journal of Materials Chemistry A;2024
4. Study on Liquid-Phase-Assisted Laser Surface Microtexturing and the Surface Properties of 304 Stainless Steel;Journal of Materials Engineering and Performance;2023-12-22
5. Laser belt processed micropillars with microporous structure and nanoparticles to control the surface wettability of superhydrophobic Inconel 718 alloy;Surfaces and Interfaces;2023-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3