Electrocatalytic Reduction of Carbon Dioxide on Nanosized Fluorine Doped Tin Oxide in the Solution of Extremely Low Supporting Electrolyte Concentration: Low Reduction Potentials
Author:
Affiliation:
1. School of Chemistry and Chemical Engineering, Yangzhou University, Jiangsu Province, Yangzhou 225002, P. R. China
2. The Testing Center of Yangzhou University, Jiangsu Province, Yangzhou 225002, P. R. China
Publisher
American Chemical Society (ACS)
Subject
Electrical and Electronic Engineering,Materials Chemistry,Electrochemistry,Energy Engineering and Power Technology,Chemical Engineering (miscellaneous)
Link
https://pubs.acs.org/doi/pdf/10.1021/acsaem.8b00146
Reference57 articles.
1. Catalytic Reactions Involving C1 Feedstocks: New High-Activity Zn(II)-Based Catalysts for the Alternating Copolymerization of Carbon Dioxide and Epoxides
2. Chemical Approaches to Artificial Photosynthesis. 2
3. Electrochemical Reduction of Carbon Dioxide to Methanol in the Presence of Benzannulated Dihydropyridine Additives
4. Tuning CO2 electroreduction efficiency at Pd shells on Au nanocores
5. Electrocatalytic reduction of carbon dioxide mediated by Re(bipy)(CO)3Cl (bipy = 2,2′-bipyridine)
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. F and N Codoped Bimetallic Oxide‐Reduced Graphene Oxide Composite Electrode FN‐NA‐CLDH@RGO for Electrocatalytic Reduction of CO2 to CO;Energy Technology;2023-04-18
2. Insight into Copper Doping Ratio on Optoelectronics Performance of Two-Dimensional Cu-Doped SnO2 Nanosheets: an Experiment and DFT Study;ACS Applied Electronic Materials;2023-03-20
3. Nano-polyaniline enables highly efficient electrocatalytic reduction of CO2 to methanol in supporting electrolyte-free media and the detection of free-radical signals;Materials Chemistry Frontiers;2023
4. Electrochemical conversion of CO2 to formic acid using a Sn based electrode: A critical review on the state-of-the-art technologies and their potential;Electrochimica Acta;2021-09
5. Facile deposition of porous fluorine doped tin oxide by Dr. Blade method for capacitive applications;Ceramics International;2021-02
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3