In Situ Synthesis of Core–Shell-Ni3Fe(OH)9/Ni3Fe Hybrid Nanostructures as Highly Active and Stable Bifunctional Catalysts for Water Electrolysis
Author:
Affiliation:
1. Australian Centre for Electromaterials Science, School of Chemistry, Monash University, Melbourne, Victoria 3800, Australia
2. School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710062, China
Funder
Centre of Excellence for Electromaterials Science, Australian Research Council
Publisher
American Chemical Society (ACS)
Subject
Electrical and Electronic Engineering,Materials Chemistry,Electrochemistry,Energy Engineering and Power Technology,Chemical Engineering (miscellaneous)
Link
https://pubs.acs.org/doi/pdf/10.1021/acsaem.8b00172
Reference48 articles.
1. Self‐Templating Synthesis of Hollow Co 3 O 4 Microtube Arrays for Highly Efficient Water Electrolysis
2. 3D Nitrogen-Anion-Decorated Nickel Sulfides for Highly Efficient Overall Water Splitting
3. Sustainable Hydrogen Production
4. Materials for solar fuels and chemicals
5. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions
Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Rapid Electrical-Field-Enhanced Corrosion Endows Ni3Fe/NiFe Layered Double Hydroxide Nanosheets with High-Rate Oxygen Evolution Activity;ACS Applied Nano Materials;2024-06-12
2. FeCo-MOF derived Co4S3/Fe3S4/MoS2 nanosheet arrays on iron foam for overall water splitting in alkaline water /seawater at large-current density;International Journal of Hydrogen Energy;2024-04
3. Active Site Engineering and Theoretical Aspects of “Superhydrophilic” Nanostructure Array Enabling Efficient Overall Water Electrolysis;Small;2023-08-23
4. Interface engineering of porous Co(OH)2/La(OH)3@Cu nanowire heterostructures for high efficiency hydrogen evolution and overall water splitting;Journal of Materials Chemistry A;2023
5. Core–Shell Carbon Nanofibers‐NiFe Structure on 3D Porous Carbon Foam: Facilitating a Promising Trajectory toward Decarbonizing Energy Production;Advanced Sustainable Systems;2022-11-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3