Soft Sensor Development Based on the Hierarchical Ensemble of Gaussian Process Regression Models for Nonlinear and Non-Gaussian Chemical Processes
Author:
Affiliation:
1. Department of Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
2. Beijing Research & Design Institute of Rubber Industry, Beijing 100143, People’s Republic of China
Funder
Ministry of Science and Technology of the People's Republic of China
Publisher
American Chemical Society (ACS)
Subject
Industrial and Manufacturing Engineering,General Chemical Engineering,General Chemistry
Link
https://pubs.acs.org/doi/pdf/10.1021/acs.iecr.6b00240
Reference64 articles.
1. Adaptive soft sensor for quality prediction of chemical processes based on selective ensemble of local partial least squares models
2. Data-driven Soft Sensors in the process industry
3. Virtual Sensing Technology in Process Industries: Trends and Challenges Revealed by Recent Industrial Applications
4. Just-in-Time Kernel Learning with Adaptive Parameter Selection for Soft Sensor Modeling of Batch Processes
5. Methods for Plant Data-Based Process Modeling in Soft-Sensor Development
Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A semi-supervised soft sensor method based on vine copula regression and tri-training algorithm for complex chemical processes;Journal of Process Control;2022-12
2. Machine Learning Algorithms Used in PSE Environments: A Didactic Approach and Critical Perspective;Industrial & Engineering Chemistry Research;2022-05-24
3. Multi-model D-vine copula regression model with vine copula-based dependence description;Computers & Chemical Engineering;2022-05
4. Adaptive soft sensor ensemble for selecting both process variables and dynamics for multiple process states;Chemometrics and Intelligent Laboratory Systems;2021-12
5. Probabilistic wind power forecasting using selective ensemble of finite mixture Gaussian process regression models;Renewable Energy;2021-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3