Dynamic Data Reconciliation for Improving the Prediction Performance of the Data-Driven Model on Distributed Product Outputs
Author:
Affiliation:
1. Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou310023, China
2. National-Local Joint Engineering Laboratory for Digitalize Electrical Design Technology, Wenzhou University, Wenzhou325035, China
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Provincial Universities of Zhejiang
Publisher
American Chemical Society (ACS)
Subject
Industrial and Manufacturing Engineering,General Chemical Engineering,General Chemistry
Link
https://pubs.acs.org/doi/pdf/10.1021/acs.iecr.2c02536
Reference39 articles.
1. A neural network-based soft sensor for particle size distribution using image analysis
2. Determination of the distribution of size of irregularly shaped particles from laser diffractometer measurements
3. Precise Control of Both Dispersity and Molecular Weight Distribution Shape by Polymer Blending
4. Modelling of Condensed Mode Cooling during the Polymerization of Ethylene in Fluidized Bed Reactors
5. A Data-Driven Soft Sensor Modeling Method Based on Deep Learning and its Application
Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Dynamic data reconciliation for enhancing the prediction performance of long short-term memory network;Measurement Science and Technology;2024-09-02
2. Temporal graph convolutional network soft sensor for molecular weight distribution prediction;Chemometrics and Intelligent Laboratory Systems;2024-09
3. An Enhanced 2D-PID Adaptive Strategy for Batch Processes through Set-point-Tuning Indirect Iterative Learning Control;International Journal of Integrated Engineering;2024-08-12
4. Simulation of the physical temperature probes for soft sensor design under feed composition changes for naphtha plant;Chemical Engineering Science;2024-08
5. Enhancement of DDST-MFAC for tracking performance by using dynamic data reconciliation;Measurement Science and Technology;2024-07-30
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3