Using Labeled Autoencoder to Supervise Neural Network Combined with k-Nearest Neighbor for Visual Industrial Process Monitoring
Author:
Affiliation:
1. Key Laboratory of Advanced Control and Optimization for Chemical Processes of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
Funder
Ministry of Education of the People's Republic of China
National Natural Science Foundation of China
Publisher
American Chemical Society (ACS)
Subject
Industrial and Manufacturing Engineering,General Chemical Engineering,General Chemistry
Link
https://pubs.acs.org/doi/pdf/10.1021/acs.iecr.9b01325
Reference27 articles.
1. Survey on data-driven industrial process monitoring and diagnosis
2. Review of Recent Research on Data-Based Process Monitoring
3. Survey on the theoretical research and engineering applications of multivariate statistics process monitoring algorithms: 2008-2017
4. Data-Based Techniques Focused on Modern Industry: An Overview
5. Fault-relevant Principal Component Analysis (FPCA) method for multivariate statistical modeling and process monitoring
Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Novel Multi-flow Multi-scale Convolutional Neural Network Developed for Quality Prediction of Batch Processes to Fuse Data With Different Sampling Frequencies;International Journal of Control, Automation and Systems;2024-04-26
2. SensorSCAN: Self-supervised learning and deep clustering for fault diagnosis in chemical processes;Artificial Intelligence;2023-11
3. A novel analysis method for electrochemical impedance spectra using deep learning;Electrochimica Acta;2023-09
4. Recent deep learning models for diagnosis and health monitoring: A review of research works and future challenges;Transactions of the Institute of Measurement and Control;2023-03-14
5. A review on autoencoder based representation learning for fault detection and diagnosis in industrial processes;Chemometrics and Intelligent Laboratory Systems;2022-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3