ZIF-Derived Co/Zn Bimetallic Catalytic Membrane with Abundant CNTs for Highly Efficient Reduction of p-Nitrophenol
Author:
Affiliation:
1. State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
2. School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
Funder
National Natural Science Foundation of China
Publisher
American Chemical Society (ACS)
Subject
Industrial and Manufacturing Engineering,General Chemical Engineering,General Chemistry
Link
https://pubs.acs.org/doi/pdf/10.1021/acs.iecr.2c01190
Reference69 articles.
1. Bimetallic catalyst derived from copper cobalt carbonate hydroxides mediated ZIF-67 composite for efficient hydrogenation of 4-nitrophenol
2. Effective reduction of p-nitrophenol by silver nanoparticle loaded on magnetic Fe3O4/ATO nano-composite
3. Catalytic Reduction of p-Nitrophenol Using Chitosan Stabilized Copper Nanoparticles
4. Two-dimensional MXene enabled carbon quantum dots@Ag with enhanced catalytic activity towards the reduction of p-nitrophenol
5. Carbon black supported on a Mn-MIL-100 framework as high-efficiency electrocatalysts for nitrophenol reduction
Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Ligand-induced hollow binary metal-organic framework derived Fe-doped cobalt-carbon nanomaterials for oxygen evolution;Journal of Colloid and Interface Science;2024-10
2. Insights into the Catalytic Performance of Multichannel Ceramic Catalytic Membrane in Liquid-Phase p-Nitrophenol Hydrogenation: Role of Storage Method;Industrial & Engineering Chemistry Research;2024-07-04
3. Multi-channel ceramic catalytic membrane for highly efficient and continuous hydrogenation of p-nitrophenol;Separation and Purification Technology;2024-06
4. Multi-channel ceramic catalytic membrane microreactors for highly efficient heterogeneous catalysis;Chemical Engineering Science;2024-04
5. Bimetallic nanostructure-functionalized membranes coupled with sulfate radical-based advanced oxidation processes: Fabrication strategies, characterizations, and applications;Chemical Engineering Journal;2024-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3