Machine-Learning-Driven Advanced Characterization of Battery Electrodes
Author:
Affiliation:
1. National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
2. Dyson School of Design Engineering, Imperial College London, London SW7 2DB, U.K.
Funder
Henry Royce Institute
U.S. Department of Energy
Faraday Institution
Publisher
American Chemical Society (ACS)
Subject
Materials Chemistry,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment,Chemistry (miscellaneous)
Link
https://pubs.acs.org/doi/pdf/10.1021/acsenergylett.2c01996
Reference69 articles.
1. Bridging nano- and microscale X-ray tomography for battery research by leveraging artificial intelligence
2. Artificial Intelligence Applied to Battery Research: Hype or Reality?
3. Guiding the Design of Heterogeneous Electrode Microstructures for Li‐Ion Batteries: Microscopic Imaging, Predictive Modeling, and Machine Learning
4. Spatial dynamics of lithiation and lithium plating during high-rate operation of graphite electrodes
5. Time-Resolved X-ray Operando Observations of Lithiation Gradients across the Cathode Matrix and Individual Oxide Particles during Fast Cycling of a Li-Ion Cell
Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. PINN surrogate of Li-ion battery models for parameter inference, Part I: Implementation and multi-fidelity hierarchies for the single-particle model;Journal of Energy Storage;2024-09
2. AI for science in electrochemical energy storage: A multiscale systems perspective on transportation electrification;Nexus;2024-09
3. Stochastic reconstruction of heterogeneous microstructure combining sliced Wasserstein distance and gradient optimization;Acta Materialia;2024-08
4. Mechanical Deformation in Lithium-Ion Battery Electrodes: Modeling and Experiment;Journal of Electrochemical Energy Conversion and Storage;2024-06-13
5. Understanding and unveiling the electro‐chemo‐mechanical behavior in solid‐state batteries;SusMat;2024-03-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3