Putting Density Functional Theory to the Test in Machine-Learning-Accelerated Materials Discovery
Author:
Affiliation:
1. Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
2. Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
Funder
Defense Advanced Research Projects Agency
American Association for the Advancement of Science
Basic Energy Sciences
Office of Naval Research
Division of Chemical, Bioengineering, Environmental, and Transport Systems
Burroughs Wellcome Fund
MIT Energy Initiative
Publisher
American Chemical Society (ACS)
Subject
General Materials Science,Physical and Theoretical Chemistry
Link
https://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.1c00631
Reference104 articles.
1. Quantum Chemistry in the Age of Machine Learning
2. Navigating Transition-Metal Chemical Space: Artificial Intelligence for First-Principles Design
3. Machine learning for molecular and materials science
4. Resolving Transition Metal Chemical Space: Feature Selection for Machine Learning and Structure–Property Relationships
5. Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error
Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Challenges Reconciling Theory and Experiments in the Prediction of Lattice Thermal Conductivity: The Case of Cu-Based Sulvanites;Chemistry of Materials;2024-09-04
2. Transparency: The Missing Link to Boosting AI Transformations in Chemical Engineering;Engineering;2024-08
3. Learning Design Rules for Catalysts Through Computational Chemistry and Machine Learning;Exploring Chemical Concepts Through Theory and Computation;2024-05-17
4. A mini review on the applications of artificial intelligence (AI) in surface chemistry and catalysis;Tenside Surfactants Detergents;2024-04-30
5. Deep Mind 21 functional does not extrapolate to transition metal chemistry;Physical Chemistry Chemical Physics;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3