Predicting the Formability of Hybrid Organic–Inorganic Perovskites via an Interpretable Machine Learning Strategy
Author:
Affiliation:
1. Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
2. Materials Genome Institute, Shanghai University, Shanghai 200444, China
Funder
Science and Technology Commission of Shanghai Municipality
National Key Research and Development Program of China
Publisher
American Chemical Society (ACS)
Subject
General Materials Science,Physical and Theoretical Chemistry
Link
https://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.1c01939
Reference50 articles.
1. Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics
2. Machine learning for perovskite materials design and discovery
3. Machine learning aided design of perovskite oxide materials for photocatalytic water splitting
4. Mixed-dimensional self-assembly organic–inorganic perovskite microcrystals for stable and efficient photodetectors
5. Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning
Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Inverse Design of Low-Resistivity Ternary Gold Alloys via Interpretable Machine Learning and Proactive Search Progress;Materials;2024-07-22
2. The mastery of details in the workflow of materials machine learning;npj Computational Materials;2024-07-02
3. Application of machine learning in perovskite materials and devices: A review;Journal of Energy Chemistry;2024-07
4. Predicting photovoltaic parameters of perovskite solar cells using machine learning;Journal of Physics: Condensed Matter;2024-06-07
5. Machine learning-based screening of two-dimensional perovskite organic spacers;Advanced Composites and Hybrid Materials;2024-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3