Multiple Instance Learning Improves Ames Mutagenicity Prediction for Problematic Molecular Species
Author:
Affiliation:
1. Computational Pharmacology & Toxicology Laboratory, Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
Publisher
American Chemical Society (ACS)
Subject
Toxicology,General Medicine
Link
https://pubs.acs.org/doi/pdf/10.1021/acs.chemrestox.2c00372
Reference37 articles.
1. EMA. ICH M7 Assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk. European Medicines Agency, 2021. https://www.ema.europa.eu/en/ich-m7-assessment-control-dna-reactive-mutagenic-impurities-pharmaceuticals-limit-potential (accessed 2021).
2. An Improved Bacterial Test System for the Detection and Classification of Mutagens and Carcinogens
3. Revised methods for the Salmonella mutagenicity test
4. Carcinogens are Mutagens: A Simple Test System Combining Liver Homogenates for Activation and Bacteria for Detection
5. Improvement of quantitative structure–activity relationship (QSAR) tools for predicting Ames mutagenicity: outcomes of the Ames/QSAR International Challenge Project
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deep active learning with high structural discriminability for molecular mutagenicity prediction;Communications Biology;2024-08-31
2. Synthesis, Docking, and Machine Learning Studies of Some Novel Quinolinesulfonamides–Triazole Hybrids with Anticancer Activity;Molecules;2024-07-02
3. Advancing Drug Safety in Drug Development: Bridging Computational Predictions for Enhanced Toxicity Prediction;Chemical Research in Toxicology;2024-05-17
4. Machine learning in toxicological sciences: opportunities for assessing drug toxicity;Frontiers in Drug Discovery;2024-02-08
5. Applying local interpretable model-agnostic explanations to identify substructures that are responsible for mutagenicity of chemical compounds;Molecular Systems Design & Engineering;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3