Enrichment of High-Throughput Screening Data with Increasing Levels of Noise Using Support Vector Machines, Recursive Partitioning, and Laplacian-Modified Naive Bayesian Classifiers
Author:
Affiliation:
1. Lead Discovery Center, Novartis Institutes for Biomedical Research Inc., 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, and Equbits LLC, 2625 Middlefield Road, #102, Palo Alto, California 94306
Publisher
American Chemical Society (ACS)
Subject
Library and Information Sciences,Computer Science Applications,General Chemical Engineering,General Chemistry
Link
https://pubs.acs.org/doi/pdf/10.1021/ci050374h
Reference32 articles.
1. Analysis of a Large Structure/Biological Activity Data Set Using Recursive Partitioning
2. Practical Approaches to Efficient Screening: Information-Rich Screening Protocol
3. Diversity screening versus focussed screening in drug discovery
4. Enrichment of Extremely Noisy High-Throughput Screening Data Using a Naïve Bayes Classifier
5. An Information-Theoretic Approach to Descriptor Selection for Database Profiling and QSAR Modeling
Cited by 110 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Fragment-based QSAR study to explore the structural requirements of DPP-4 inhibitors: a stepping stone towards better type 2 diabetes mellitus management;SAR and QSAR in Environmental Research;2024-06-02
2. A combined ligand-based and structure-based in silico molecular modeling approach to pinpoint the key structural attributes of hydroxamate derivatives as promising meprin β inhibitors;Journal of Biomolecular Structure and Dynamics;2024-01-02
3. A two-stage dominance-based surrogate-assisted evolution algorithm for high-dimensional expensive multi-objective optimization;Scientific Reports;2023-08-13
4. A Two-Stage Dominance-Based Surrogate-Assisted Evolution Algorithm for High-Dimensional Expensive Multi-Objective Optimization;2023-03-15
5. Machine Learning Models for Predicting Liver Toxicity;Methods in Molecular Biology;2022
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3