Electrocatalytic CO2-to-C2+ with Ampere-Level Current on Heteroatom-Engineered Copper via Tuning *CO Intermediate Coverage
Author:
Affiliation:
1. School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
2. School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Funder
Australian Research Council
National Natural Science Foundation of China
Publisher
American Chemical Society (ACS)
Subject
Colloid and Surface Chemistry,Biochemistry,General Chemistry,Catalysis
Link
https://pubs.acs.org/doi/pdf/10.1021/jacs.2c06820
Reference40 articles.
1. What would it take for renewably powered electrosynthesis to displace petrochemical processes?
2. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels
3. CO 2 electrolysis to multicarbon products at activities greater than 1 A cm −2
4. CO 2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface
5. The Controllable Reconstruction of Bi‐MOFs for Electrochemical CO 2 Reduction through Electrolyte and Potential Mediation
Cited by 182 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. N-doped Cu2O with the tunable Cu0 and Cu+ sites for selective CO2 electrochemical reduction to ethylene;Journal of Environmental Sciences;2025-04
2. Highly dispersed atomic-level Ni active sites confined in defects for efficient electrocatalytic reduction of carbon dioxide;Journal of Energy Chemistry;2024-12
3. Enhanced CO2 electroreduction to C2+ production on asymmetric Zn-O-Cu sites via tuning of *CO intermediate adsorption;Applied Catalysis B: Environment and Energy;2024-12
4. Copper nanoparticles embedded flexible graphene aerogel for effective capture of iodine vapor;Microporous and Mesoporous Materials;2024-11
5. Asymmetric Cu−N1O3 Sites Coupling Atop‐type and Bridge‐type Adsorbed *C1 for Electrocatalytic CO2‐to‐C2 Conversion;Angewandte Chemie;2024-09-13
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3