Spatial Modeling of Daily PM2.5, NO2, and CO Concentrations Measured by a Low-Cost Sensor Network: Comparison of Linear, Machine Learning, and Hybrid Land Use Models
Author:
Affiliation:
1. Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
2. Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
Funder
Heinz Endowments
U.S. Environmental Protection Agency
Natural Sciences and Engineering Research Council of Canada
Publisher
American Chemical Society (ACS)
Subject
Environmental Chemistry,General Chemistry
Link
https://pubs.acs.org/doi/pdf/10.1021/acs.est.1c02653
Reference50 articles.
1. Health Effects Institute. Institute for Health Metrics and Evaluation’s Global Burden of Disease; State of Global Air 2019. Special Report, 2019; p 24.
2. World Health Organization. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease; World Health Organization, 2016; pp 1–131.
3. Development of Land Use Regression Models for PM2.5, PM2.5 Absorbance, PM10 and PMcoarse in 20 European Study Areas; Results of the ESCAPE Project
4. Application of mobile sampling to investigate spatial variation in fine particle composition
Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Integrating Doppler LiDAR and machine learning into land-use regression model for assessing contribution of vertical atmospheric processes to urban PM2.5 pollution;Science of The Total Environment;2024-11
2. Cost-Efficient measurement platform and machine-learning-based sensor calibration for precise NO2 pollution monitoring;Measurement;2024-09
3. Combining Google traffic map with deep learning model to predict street-level traffic-related air pollutants in a complex urban environment;Environment International;2024-09
4. National, satellite-based land-use regression models for estimating long-term annual NO2 exposure across India;Atmospheric Environment: X;2024-08
5. Emissions and exposure to NOx, CO, CO2 and PM2.5 from a gas stove using reference and low-cost sensors;Atmospheric Environment;2024-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3