Machine Learning-Assisted Development of Sensitive Electrode Materials for Mixed Potential-Type NO2 Gas Sensors
Author:
Affiliation:
1. State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
Funder
Ministry of Education of the People's Republic of China
People's Government of Jilin Province
National Natural Science Foundation of China
Publisher
American Chemical Society (ACS)
Subject
General Materials Science
Link
https://pubs.acs.org/doi/pdf/10.1021/acsami.1c14531
Reference38 articles.
1. A review of mixed-potential type zirconia-based gas sensors
2. Development of zirconia-based potentiometric NOx sensors for automotive and energy industries in the early 21st century: What are the prospects for sensors?
3. A grey-box machine learning based model of an electrochemical gas sensor
4. Sub-ppm YSZ-based mixed potential type acetone sensor utilizing columbite type composite oxide sensing electrode
5. Impedancemetric YSZ-based oxygen sensor using BaFeO3 sensing-electrode
Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. 3D printing of biodegradable polymers and their composites – Current state-of-the-art, properties, applications, and machine learning for potential future applications;Progress in Materials Science;2024-12
2. Hyperbolic mode resonance-based acetone optical sensors powered by ensemble learning;Sensors and Actuators B: Chemical;2024-11
3. General synthesis of porous metal oxides nanosheets for gas sensing by gradient crystallization induced spatial confinement approach;Chemical Engineering Journal;2024-10
4. Machine Learning‐Assisted Research and Development of Chemiresistive Gas Sensors;Advanced Engineering Materials;2024-07-31
5. The bottleneck and innovation key of MEMS-based metal oxide semiconductors gas sensor for petrochemical industry;Chemical Engineering Journal;2024-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3