Entropy-Increasing Single-Atom Photocatalysts Strengthening the Polarization Field for Boosting H2O Overall Splitting into H2
Author:
Affiliation:
1. School of Materials Science & Chemical Engineering, Ningbo University, Fenghua Road 818, Ningbo330013, China
2. School of Chemistry, Chemical Engineering and Material Science, Shandong Normal University, Wenhua East Road 88, Jinan250014, China
Funder
Natural Science Foundation of Ningbo
Ningbo University
National Natural Science Foundation of China
Publisher
American Chemical Society (ACS)
Subject
Catalysis,General Chemistry
Link
https://pubs.acs.org/doi/pdf/10.1021/acscatal.2c05014
Reference47 articles.
1. Polymer photocatalysts for solar-to-chemical energy conversion
2. Particulate photocatalysts for overall water splitting
3. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts
4. An Excitonic Perspective on Low-Dimensional Semiconductors for Photocatalysis
5. Strategies and Methods of Modulating Nitrogen-Incorporated Oxide Photocatalysts for Promoted Water Splitting
Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Synchronous optimization of H2O and H adsorption on NiO1-Te nanodots for alkaline photocatalytic H2 evolution;Journal of Colloid and Interface Science;2025-01
2. Optimization of d-p band centers as efficient active sites for solar energy conversion into H2 by tuning surface atomic arrangement;Applied Catalysis B: Environment and Energy;2024-12
3. Charge self-regulation over in-plane two-dimensional/two-dimensional hetero-cocatalyst for robust photocatalytic hydrogen generation;Journal of Colloid and Interface Science;2024-12
4. Anchoring NiSx (x=0, 1, 2) on porous g-C3N4 (PCN) to enhance photocatalytic H2 production: The effect of S element on H2 evolution;International Journal of Hydrogen Energy;2024-08
5. Protruding‐Shaped Co Polarization Field on Ultrathin Covalent Triazine Framework Nanosheets for Efficient CO2 Photoreduction;Advanced Energy Materials;2024-06-02
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3