The First Experience of Dynamic Intramedullary Osteosynthesis of Diaphyseal Fractures of the Tibia Using Implants Based on Magnesium Alloy

Author:

Yatsun Ye.V.ORCID,Ivchenko D.V.,Holovakha M.L.

Abstract

Summary. The efficiency of using the dynamic blocking intramedullary osteosynthesis (BIOS) technique for tibial fractures with the use of biodegradable implants based on the MS-10 magnesium alloy was determined. Objective: to approve the technique and to study the effectiveness of dynamic intramedullary osteosynthesis of diaphyseal fractures of the tibia using locking screws made of the biodegradable magnesium alloy MS-10. Materials and Methods. The study was carried out in the Department of Traumatology of the Municipal Non-Profit Enterprise “City Hospital of Emergency and Ambulance” of Zaporizhzhia City Council in Zaporizhzhia on 15 patients with diaphyseal fractures of the tibia, who underwent BIOS. Cannulated intramedullary titanium rods were used as a fixator. In the proximal section, a screw made of titanium alloy was introduced into a dynamic hole; a screw made of a biodegradable magnesium alloy MC-10 was inserted into a static hole. In the postoperative period, the patients underwent a course of complex rehabilitation measures. X-ray control was performed on day 1, at week 4, week 8, and week 16 after the surgery. Results. After the start of the dosed load on the injured limb, a fracture of the locking screw made of MC-10 alloy was radiographically recorded in all patients. The dynamic screw moves in the dynamic hole and the fracture is dynamized. The formation of callus in the fracture zone was unremarkable and took an average physiological time. The quality and structure of callus did not show any pathological features. Four months after the surgery, all patients were socially adapted and did not use additional support when moving. Conclusions. Based on the data obtained, it is possible to draw a conclusion about the possibility and advisability of using biodegradable implants made of magnesium alloy MS-10 in a dynamic BIOS of long bones of the human skeleton.

Publisher

Institute of Traumatology and Orthopedics of the National Academy of Medical Sciences of Ukraine

Reference31 articles.

1. Baumgaertel F, Dahlen C, Stiletto R, Gotzen L. Technique of using the AO femoral distractor for femoral intramedullary nailing. J. Orthop. Trauma. 1994 Aug;8(4):315-21. DOI: 10.1097/00005131-199408000-00007.

2. Behrens F, Searls K. External fixation of the Tibia. Basic concept and prospective evaluation. J. Bone Joint Surg. 1986;68B(2):246-54. DOI: 10.1302/0301-620X.68B2.3514629.

3. Гайко ГВ, Калашников АВ, Вдовиченко КВ, Чалайдюк ТП. Анализ результатов лечения диафизарных переломов большеберцовой кости при использовании различных видов остеосинтеза. Остеосинтез. 2012;3(20):6-20.

4. Gayko GV, Kalashnikov AV, Vdovichenko KV, Chalaydyuk TP. Analysis of the results of treatment of diaphyseal fractures of the tibia using various types of osteosynthesis. Osteosintez. 2012;3(20):6-20. [in Russian].

5. Климовицький ВГ, Оксимець ВМ. Симпозіум «Переломи, що не зрослися, та псевдоартрози». Травма. 2012;13(4):166-74.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3