Ceramic-on-Ceramic Bearings in Total Joint Arthroplasty. Part 1

Author:

Zazirnyi I.M.

Abstract

Summary. Ceramic bearings were first employed as alternatives to polyethylene (PE) bearings in total joint arthroplasty about a decade after Sir John Charnley introduced the first durable total hip arthroplasty (THA) with a metal-PE articulation. Charnley’s approach was based on a metal stem bonded to bone with polymethylmethacrylate (PMMA) and an acetabular component made of ultra-high-molecular-weight PE (UHMWPE). Microscopic particulate debris in the joint space from bearing wear has been shown to lead to periprosthetic inflammation, osteolysis, and implant loosening. Cross-linking can reduce the wear of UHMWPE, but it also compromises UHMWPE’s mechanical properties. Accordingly, there are concerns related to potential brittleness if UHMWPE implants are not positioned optimally. Also, the smaller particles generated from cross-linked UHMWPE may present an increased particulate load in vivo. Thus, there is a need for data on the long-term outcomes of cross-linked UHMWPE. Any technology that can reduce bearing wear rates in THA and total knee arthroplasty (TKA) can potentially decrease the morbidity and risks associated with premature revision surgery related to wear. Improved wear resistance also allows the use of large-diameter femoral heads in THA, leading to increased arc of movement and less risk of prosthesis dislocation. The ideal joint bearing for THA and TKA would be able to withstand high cyclic loading for several decades without undergoing corrosion or fretting at modular metal tapers, and would possess proven biocompatibility and material stability in vivo, as well as ultralow wear rates. The search for the ideal total joint bearing has led to the development of ceramic bearings.

Publisher

Institute of Traumatology and Orthopedics of the National Academy of Medical Sciences of Ukraine

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3