Técnicas para el Análisis de Sentimiento en Twitter: Aprendizaje Automático Supervisado y SentiStrength

Author:

Baviera Tomás

Abstract

El análisis del sentimiento en los mensajes publicados en Twitter ofrece posibilidades de gran interés para evaluar las corrientes de opinión difundidas a través de este medio. Los enormes volúmenes de textos requieren de herramientas capaces de procesar automáticamente estos mensajes sin perder abilidad. Este artículo describe dos tipos de técnicas para abordar este problema. La primera estrategia se basa en los procesos de Aprendizaje Automático Supervisado. Su aplicación requiere integrar algunas herramientas del Procesamiento de Lenguajes Naturales y tomar como punto de partida un corpus clasi cado. El segundo enfoque está basado en diccionarios de polaridad. En esta línea se sitúa la herramienta de SentiStrength, la cual se está aplicando cada vez más a los estudios de Twitter en inglés. El artículo evalúa los estudios más avanzados que utilizan cada uno de estos enfoques para el análisis de los tweets en castellano. Por último, se señalan las ventajas y limitaciones de cada uno de estos enfoques para su aplicación a la investigación en comunicación política. Si bien el aprendizaje automático supervisado permite tener en cuenta el contexto, el investigador requiere competencias de analista de datos con el n de a nar mejor el proceso. En cambio, SentiStrength está más orientado al contenido semántico de los términos del mensaje, y se requiere más bien una competencia en lingüística por parte del investigador. La principal conclusión es que ambos métodos automáticos de análisis no pueden prescindir de una exigente codi cación manual si se desea utilizarlos con abilidad en la investigación.

Publisher

Universitat de Valencia

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research Background;The Latin American Studies Book Series;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3