Performance analysis of natural gas sweetening unit with amine solution and blends

Author:

Mushtaq Faisal, ,Alam Nasar,Ullah Aamir, ,

Abstract

In this study, raw natural gas data from Uch gas field located in Dera-Bugti of Balochistan, Pakistan is simulated for performance analysis over amine absorber unit in Aspen HYSYS V9.0. The primary amine, MDEA was selected to remove bulk CO2 and reduce H2S to ppm level, where secondary amines, MEA, DEA and Sulfolane were selected to observe CO2 levels in sweet gas. The primary amine in isolation and blend with secondary amine was simulated and analysed over absorber performance. The absorber performance is reported as CO2, H2S and water content in sweet gas, hydrocarbons in rich amine and its temperature. MDEA in isolation resulted in minimum 14.13 and 12.78 mol% CO2 in sweet gas and rich amine temperature of 81.11oC and 82.13oC with 24 and 30-Trays, respectively at 2500 m3 /h of lean amine recirculation rate. Among the tested blends, MDEA/MEA, MDEA/Sulfolane showed no significant improvement on absorber performance compared to isolated MDEA. However, MDEA/DEA blends indicated that CO2 in sweet gas can be reduced to 12.07, 3.41, 1.85 mol% with rich amine temperature of 89.05, 111.72 and 124.80oC, respectively. The lowest CO2 detected of 1.85 mol% was achieved with 40 mol% MDEA and 15 mol% DEA blend at 2500 m3 /h recirculation rate and rich amine temperature of 124.80oC. The results indicated that MDEA/DEA blend has the potential to attain CO2 of less than 2 mol%. The higher rich amine temperature raise concern that can be resolved by using heat stabilized salt.

Publisher

Mehran University of Engineering and Technology

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3