Comparison of solving probabilistic optimal power flow methods in the presence of wind and solar sources

Author:

Fattahi Hamid, ,Abdi Hamdi,Khosravi Farshad,Karimi Shahram, , ,

Abstract

Power system control and operation studies have been experienced essential changes due to increasing the penetration of uncertain renewable energy resources. One of the most critical issues in this regard is the optimal power flow (OPF). As a result, the deterministic methods do not have the capability of different modeling uncertainties raised in new power systems, and there is a need to investigate the effective models in this regard. This paper focuses on probabilistic optimal power flow (POPF) methods applied to power systems with uncertain wind and Photovoltaic power generations. In this paper, the Monte Carlo simulation (MCS) and analytical methods such as the three-point estimation method (3PEM), unscented transformation (UT), and Interior-Point method (IPM) are applied to solve the probabilistic optimal power flow problem. MCS has been widely applied as a framework to assess the ability of analytical methods. The mentioned techniques are applied to a sample case study extracted from the IEEE 300-bus system. The main contribution of this work is the comparison of analytical methods concluding 3PEM, UT, and IPM, and with MCS as well. The obtained results on the studied networks by the suggested techniques show that in the 3PEM, due to the limited points, the optimal solution is achieved in less calculation time than the other methods. From another perspective, the voltage changes at the buses would be more stable in the IPM. Also, this method is much faster than the MCS method in terms of the convergence rate. To show the effectiveness of the mentioned methods, this paper presents probabilistic load flow method based on the statistical methods to deal with fluctuations because of large-scale renewable energy integration. The proposed methods are validated on the improved industrial 85–bus system of Kermanshah region (in the west of Iran) by adding solar and wind farms.

Publisher

Mehran University of Engineering and Technology

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Static Voltage Stability Analysis of Power Grid with UPFC Considering Wind Power Uncertainty;2023 5th International Conference on Electrical Engineering and Control Technologies (CEECT);2023-12-15

2. GraphSAGE-Based Probabilistic Optimal Power Flow in Distribution System;2023 International Conference on Power System Technology (PowerCon);2023-09-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3