Statistical model and forecasting of bandwidth requirements on aggregating nodes of FTTX network using Monte Carlo computations for different demographic segments

Author:

Munir Abid, ,Ali Amjad,Latif Abdul, ,

Abstract

Telecom service providers are on a relentless task of development and upgradation of their networks to support increasing requirements of internet users. FTTX landline connections serves multiple users connected on a single line hence need more robust and high data rate capabilities. In FTTX network, link capacity allocation for a service node to aggregating node requires statistical study of usage patterns of customers of the service areas. Different service areas have different usage patterns hence their statistical distributions are different. In this article we have acquired a yearlong data of peak hour utilizations from customers of the largest FTTX service provider in Pakistan to develop a statistical model. We developed an empirical distribution of peak hours of the customers mapped on day clock. This distribution has been used in Monte Carlo computation to find maximum data rate requirements on aggregation nodes in comparison to subscribed data rates of all users on a service node. Further a forecasting model has been used to predict the growth in subscriber demands in different demographic segments for coming years. A combination of maximum possible data rate requirement at aggregation node and forecasted subscriber data rates led to develop a forecast of data rate requirement for next five years in different demographic segments.

Publisher

Mehran University of Engineering and Technology

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3