Effect of Niobium and Titanium Addition on Formation of Second Phase Particles in CHQ Steel Using Transmission Electron Microscope

Author:

Abro Shahid Hussain1

Affiliation:

1. Department of Materials Engineering, NED University of Engineering and Technology, Karachi, Sindh, Pakistan.

Abstract

It is common practice that formation of second phase particles such as nitrides or carbides in the steel matrix has significant role to control the grain size of steel. An attempt is made in the present research work to find out the role of nitrogen to form the nitride particles either with Al, Ti, B, Cr or Si. Two steel samples Steel-A and Steel-B with same titanium and aluminum weight percent in the chemical composition were obtained in hot rolled conditions from international market with only the difference of presence of Niobium in Steel-A. Solution heat treatment was performed at 1350°C with 60 minutes holding time in protherm heat treatment furnace available locally was used to dissolve the particles and then steel samples were reheat treated at 800°C with holding time of 60 minutes and water quenched and microstructure was revealed. Transmission electron microscope connected with Ehlers-Danlos Syndrome (EDS) was used to reveal the morphology of second phase particles. Both samples for a high resolution power Transmission Electron Microscopy (TEM) (Jeol JEM 3010) analysis were prepared by using carbon extraction replica method in 5% Nital solution as an etching technique. Both samples were then caught in copper grid of 3mm for using TEM analysis. TEM micrographs clearly revealed the second phase particles in the matrix of steel. The EDS peaks were studied and it was found that the peaks showed the titanium peaks in both the samples A and B and surprisingly there was no any peak found for aluminum. Stoichiometric calculations were carried out and it was found that weight percent nitrogen required for forming TiN is 0.0073, however the total nitrogen present in both the steels A and B is 0.0058 and 0.0061 respectively. That means that all the nitrogen present in the steel matrix was consumed by titanium to form the Titanium Nitride (TiN) so there was no nitrogen remain to fulfil the requirement of aluminum to form the Aluminum Nitride (AlN) particles.

Publisher

Mehran University of Engineering and Technology

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3