A machine learning approach for Urdu text sentiment analysis

Author:

Akhtar Muhammad,Rehman Saif Ur

Abstract

Product evaluations, ratings, and other sorts of online expressions have risen in popularity as a result of the emergence of social networking sites and blogs. Sentiment analysis has emerged as a new area of study for computational linguists as a result of this rapidly expanding data set. From around a decade ago, this has been a topic of discussion for English speakers. However, the scientific community completely ignores other important languages, such as Urdu. Morphologically, Urdu is one of the most complex languages in the world. For this reason, a variety of unique characteristics, such as the language's unusual morphology and unrestricted word order, make the Urdu language processing a difficult challenge to solve. This research provides a new framework for the categorization of Urdu language sentiments. The main contributions of the research are to show how important this multidimensional research problem is as well as its technical parts, such as the parsing algorithm, corpus, lexicon, etc. A new approach for Urdu text sentiment analysis including data gathering, pre-processing, feature extraction, feature vector formation, and finally, sentiment classification has been designed to deal with Urdu language sentiments. The result and discussion section provides a comprehensive comparison of the proposed work with the standard baseline method in terms of precision, recall, f-measure, and accuracy of three different types of datasets. In the overall comparison of the models, the proposed work shows an encouraging achievement in terms of accuracy and other metrics. Last but not least, this section also provides the featured trend and possible direction of the current work.

Publisher

Mehran University of Engineering and Technology

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Roman Urdu Slang Dictionary Development for Facebook Comment Sentiment Analysis;2024 IEEE 1st Karachi Section Humanitarian Technology Conference (KHI-HTC);2024-01-08

2. Sentiment Analysis Based on Urdu Reviews Using Hybrid Deep Learning Models;Applied Computer Systems;2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3