FPGA Implementation of RLSE Algorithm for Multichannel Brain Imaging

Author:

Nazir Muhammad Shahid1,Khan Haroon-Ur-Rasheed1,Akram Abubaker1,Maheshwari Bhagesh1,Aqil Muhammad1

Affiliation:

1. Department of Electrical Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan.

Abstract

This paper describes the implementation of a computationally efficient embedded system on an Field Programmable Gate Array (FPGA) platform for real-time brain activity estimation with multiple channels. The brain signals from multiple channels are considered as output of independent linear systems with unknown parameters representing the brain activity in corresponding channels. Multiple adaptive Recursive Least-Squares Estimation (RLSE) cores are implemented in FPGA to independently estimate the brain activity in each channel concurrently. The proposed RLSE-FPGA system provides dedicated (no time or resource sharing) and parallel processing environment. The universal asynchronous receiver transmitter core is also developed to communicate the measured and estimated parameters supported by storage facility programmed as shared memory. The computational precision is guaranteed by deploying a 32-bit floating point core for all the variables. The validation carried out by real Functional Near-Infrared Spectroscopy dataset and comparative analysis with the previously reported result, demonstrates the effectiveness of the proposed system. The computational cost endorses the effectiveness of concurrent processing of multiple channelsꞌ data in a sample before the arrival of the next sample. The proposed methodology has potential in real-time medical, military and industrial applications.

Publisher

Mehran University of Engineering and Technology

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An ARM Cortex Microcontroller Based Solution for Real-Time Extraction and Classification of Autoregressive EEG Features;2021 4th International Conference on Computing & Information Sciences (ICCIS);2021-11-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3