A Multi-blocked Image Classifier for Deep Learning

Author:

Hamza Shah Nawaz Muhammad1,Junaid Muhammad1,Muhammad Faseeh Nawab1,Shin Dong Ryeol1

Affiliation:

1. Sungkyunkwan University, South Korea.

Abstract

onvolutional Neural Networks (CNN) have been very successful in classification and object recognition. A lot of related work has been done to modify the performance of the networks, but they could either perform better with accuracy at high cost or decrease the time taken by a model on training datasets. We propose a deep neural network model ’Multi-Blocked Model’ which tends to decrease this gap and is efficient and accurate with less convolutional layers, easy to deploy online or embedded systems. We choose three datasets that are publicly available and popular for their own uniqueness among the datasets in deep neural networks. These three diverse datasets are: Modified National Institute of Standards and Technology (MNIST), Street View House Number (SVHN) and the Canadian Institute for Advanced Research with 10 Cases (CIFAR-10). Our stateof-the-art Multi-Blocked model is presented well on all three data sets. Dropout is added to overcome the overfitting problem. The multi-blocked model is designed in a way that it uses a minimum number of parameters so that it is able to run on a Graphical Processing Unit (GPU), which requires less power. The experimental results show that our proposed Multi-Blocked model tends to achieve the accuracy of these datasets by 99.40%, 90.8%, 88.07% consuming under 2 GB of graphical memory.

Publisher

Mehran University of Engineering and Technology

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3