Analyzing the Effects of Data Augmentation on Single and Multimodal Biometrics

Author:

Leghari Mehwish1,Memon Shahzad2,Dhomeja Lachman Das3,Jalbani Akhter Hussain1

Affiliation:

1. Department of Information Technology, Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah, Sindh, Pakistan.

2. Institute of Information Technology, University of Sindh, Jamshoro, Sindh, Pakistan

3. Institute of Information Technology, University of Sindh, Jamshoro, Sindh, Pakistan.

Abstract

Now-a-days, in the field of machine learning the data augmentation techniques are common in use, especially with deep neural networks, where a large amount of data is required to train the network. The effectiveness of the data augmentation technique has been analyzed for many applications; however, it has not been analyzed separately for the multimodal biometrics. This research analyzes the effects of data augmentation on single biometric data and multimodal biometric data. In this research, the features from two biometric modalities: fingerprint and signature, have been fused together at the feature level. The primary motivation for fusing biometric data at feature level is to secure the privacy of the user’s biometric data. The results that have been achieved by using data augmentation are presented in this research. The experimental results for the fingerprint recognition, signature recognition and the feature-level fusion of fingerprint with signature have been presented separately. The results show that the accuracy of the training classifier can be enhanced with data augmentation techniques when the size of real data samples is insufficient. This research study explores that how the effectiveness of data augmentation gradually increases with the number of templates for the fused biometric data by making the number of templates double each time until the classifier achieved the accuracy of 99%.

Publisher

Mehran University of Engineering and Technology

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FAV-Net: A Simple Single-Shot Self-attention Based ForeArm-Vein Biometric;Communications in Computer and Information Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3