A Wideband and Efficient Patch Antenna with Two Different Feeding Mechanisms for Ku/K Bands Applications

Author:

Ahmed Gulzar1,Babar Muhammad Inayatullah2,Ali Sadique3,Ali Faheem3

Affiliation:

1. Department of Electrical Engineering, University of Engineering and Technology, Peshawar, Pakistan

2. University of Engineering and Technology, Taxila, Pakistan.

3. Department of Electrical Engineering, University of Engineering and Technology, Peshawar, Pakistan.

Abstract

Low BW (Bandwidth) is a major limitation of microstrip antennas. A patch antenna having a large BW for Ku band applications is demonstrated in this manuscript. The skills of Defected Ground Structure (DGS) and defected driven patch were engaged to widen its BW. Four slices have also been confiscated from the ground for upgrading various characteristics. It is established on the basis of this study that it can be employed in spectrum defining and bands. It puts forward an impedance BW of 8GHz, which is appropriate for numerous applications. The ground/substrate of the structure under consideration is 22×10-3m long and 10×103m wide and these specifications imply that the volume of this design is very small. The entire structure’s utmost thickness is 1.67×10-3m. It can be easily installed in relevant handy electronic devices. Investigations and analysis in this case are made with computer software known as Computer Simulation Technology. The simulated design exhibits a very good gain and efficiency. Deviation in the gain of the simulated design was from 4.4 7.3dBi and it guaranteed the highest efficiency of 98.6%. Some minor changes in the antenna resulted in expansion in the BW from 8GHz to 14GHz. The return loss which was recorded at frequency of 18.15GHz went to 48.97dB and the mentioned changes assured the uppermost efficiency of 83.1%. The fabricated antenna achieved a bandwidth of 28GHz which is far better than the simulated bandwidth.

Publisher

Mehran University of Engineering and Technology

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3