Assessing Large-Scale, Cross-Domain Knowledge Bases for Semantic Search

Author:

Ahmad Khan Aatif1,Malik Sanjay Kumar1

Affiliation:

1. University School of Information, Communication and Technology, Guru Gobind Singh Indraprastha University, Delhi, India.

Abstract

Semantic Search refers to set of approaches dealing with usage of Semantic Web technologies for information retrieval in order to make the process machine understandable and fetch precise results. Knowledge Bases (KB) act as the backbone for semantic search approaches to provide machine interpretable information for query processing and retrieval of results. These KB include Resource Description Framework (RDF) datasets and populated ontologies. In this paper, an assessment of the largest cross-domain KB is presented that are exploited in large scale semantic search and are freely available on Linked Open Data Cloud. Analysis of these datasets is a prerequisite for modeling effective semantic search approaches because of their suitability for particular applications. Only the large scale, cross-domain datasets are considered, which are having sizes more than 10 million RDF triples. Survey of sizes of the datasets in triples count has been depicted along with triples data format(s) supported by them, which is quite significant to develop effective semantic search models.

Publisher

Mehran University of Engineering and Technology

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3