Heat transfer augmentation through engine oil-based hybrid nanofluid inside a trapezoid cavity

Author:

Awais Muhammad,Soomro Feroz Ahmed,El-Sapa Shreen,Khokhar Rahim Bux

Abstract

Heat transfer occurs as a result of density differences caused by temperature changes. It has several industrial applications. To improve performance, one must investigate the heat transfer behaviour of the working fluid. Hence, the purpose of this work is to report a heat transfer analysis of a partially heated trapezoid cavity filled with a hybrid nanofluid. The temperature conditions of the cavity are such that the bottom boundary is partially heated, inclined side boundaries are kept at a lower temperature, and the upper boundary is kept adiabatic. A trapezoidal shape heated obstacle is considered in the cavity’s centre. The heat transfer and flow take place inside the cavity due to density variation. The mechanism is regulated by mass, momentum, and energy conservation, as well as related boundary constraints. The solutions are determined by the use of a numerical technique known as the Finite Element Method after the governing equations are transformed into non-dimensional form, which brings up physical parameters affecting the heat transfer and flow. The initial study is performed for three types of nanofluids with silver 𝐴𝑔 and magnesium oxide 𝑀𝑔𝑜 nanoparticles inside water 𝐻2𝑂, kerosene 𝐾𝑒, and engine oil 𝐸𝑂. The study revealed that the engine oil-based hybrid nanofluid produced an increased heat transfer rate. Simulation is performed using engine-based hybrid nanofluid with the range of physical parameters, such as Rayleigh number 𝑅𝑎 (105≤𝑅𝑎≤107), Hartmann number 𝐻𝑎 (0≤𝐻𝑎≤100) and nanoparticles volume fraction 𝜙 (0≤𝜙≤0.2). It is found that the heat transfer rate is enhanced by increasing the fraction of nanoparticles in the base fluid. Moreover, imposition of magnetic field has reverse impact on the fluid movement.

Publisher

Mehran University of Engineering and Technology

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3