An IoT and machine learning solutions for monitoring agricultural water quality: a robust framework

Author:

Rahu Mushtaque Ahmed,Shaikh Muhammad Mujtaba,Karim Sarang,Chandio Abdul Fattah,Dahri Safia Amir,Soomro Sarfraz Ahmed,Ali Sayed Mazhar

Abstract

All living things, comprising animals, plants, and people require water to survive. The world is covered in water, just 1 percent of it is fresh and functional. The importance and value of freshwater have increased due to population growth and rising water demands. Approximately more than 70 percent of the world's freshwater is used for agriculture. Agricultural employees are the least productive, inefficient, and heavily subsidized water users in the world. They also utilize the most water overall. Irrigation consumes a considerable amount of water. The field's water supply needs to be safeguarded. A critical stage in estimating agricultural production is crop irrigation. The global shortage of fresh water is a serious issue, and it will only get worse in the years to come. Precision agriculture and intelligent irrigation are the only solutions that will solve the aforementioned issues. Smart irrigation systems and other modern technologies must be used to improve the quantity of high-quality water used for agricultural irrigation. Such a system has the potential to be quite accurate, but it requires data about the climate and water quality of the region where it will be used. This study examines the smart irrigation system using the Internet of Things (IoT) and cloud-based architecture. The water's temperature, pH, total dissolved solids (TDS), and turbidity are all measured by this device before the data is processed in a cloud using the range of machine learning (ML) approaches. Regarding water content limits, farmers are given accurate information. Farmers can increase production and water quality by using effective irrigation techniques. ML methods comprising support vector machines (SVM), random forests (RF), linear regression, Naive Bayes, and decision trees (DT) are used to categorize pre-processed data sets. Performance metrics like accuracy, precision, recall, and f1-score are used to calculate the performance of ML algorithms.

Publisher

Mehran University of Engineering and Technology

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3