Investigating parametric effects during TIG welding of dissimilar metals

Author:

Abdullah Abdullah,Mehmood Shahid,Rahman Rana Atta Ur

Abstract

This paper explores the optimization of Tungsten-Inert-Gas (TIG) welding process parameters for creating a hybrid structure of Aluminium 6061 and Stainless Steel 304 using a copper filler rod (ER-Cu). The Welding of these two materials has industrial relevance owing to its weight reduction capabilities and environmental benefits. However, Aluminium and Stainless-Steel have different melting points and thermal properties. Aluminium has twice coefficient of thermal expansion and six times coefficient of thermal conductance as compared to Stainless-Steel. This difference often results in residual stresses and brittle intermetallic compounds in the weld region. We have chosen the Welding Current, Welding Speed, and Gas Flow Rate as input parameters, and Ultimate Tensile Strength (UTS) and Micro-hardness as response parameters. We have employed the Response Surface Methodology (RSM) using a Box-Behnken design to evaluate the influence of input parameters on UTS and Micro-hardness. Furthermore, an Analysis of Variance (ANOVA) is conducted to determine the input parameters' significance on the response parameters. Our surface plots demonstrate that UTS improves with increased Welding Current and reduced Welding Speed. Simultaneously, Micro-hardness increases with elevated Welding Speed and decreased current, up to a specific limit. The peak value of UTS (79 MPa) was observed with a Current range of 85-90 A, Speed range of 95-100 mm/min, and Gas Flow Rate of 14.5-15 l/min. On the other hand, maximum Micro-hardness (260HV) was obtained with a Current range of 80-85 A, Speed range of 105-110 mm/min, and Gas Flow Rate of 14.5-15 l/min. This research contributes to improving the manufacturing process of hybrid structures, specifically by optimizing the advantages of both Aluminium and Stainless Steel while addressing the challenges that arise during their combination. The study's conclusions have major consequences for sectors looking to take advantage on the mutually beneficial characteristics of different metals in welding applications.

Publisher

Mehran University of Engineering and Technology

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3