Non-Invasive Technique to Classify Cirrhotic Liver Using Texture Parameters

Author:

Nisa Mehrun1,Buzdar Saeed Ahmad2,Riaz Sadia3,Warraich Mustansar Mahmood3,Ahmad Muhammad Saeed4

Affiliation:

1. Institute of Physics, Islamia University Bahawalpur, Punjab, Pakistan. Department of Physics, Government Sadiq College Women University, Bahawalpur, Punjab, Pakistan

2. Institute of Physics, Islamia University Bahawalpur, Punjab, Pakistan.

3. Department of Diagnostic Radiology, Bahawal Victoria Hospital, Bahawalpur, Pakistan.

4. Department of Computer Science and Information Technology, Government Sadiq College Women University, Bahawalpur, Pakistan.

Abstract

Texture analysis is an outstanding and fundamental task being used in many medical and computer vision applications. Malfunctioning of the human liver upsets almost all the other organs in the human body. Usually liver infections are difficult to analyze because of inconclusive side effects. More often, the liver could be confronting critically but it may not be significantly unveiled. The main objective of this research work is to provide some standard liver diagnostic measures to minimize the risk factors, as better diagnosis is essential requirement in radiology. The Computerized Tomography (CT) contributes important information to the clinical evaluation of diffuse liver diseases. Haralick texture parameters have been computed on the selected Regions of Interest. B11 is used for discrimination and interpretation of normal and cirrhotic liver diseases. Normal and diseased Liver CT images were collected from Bahawal Victoria Hospital. Normal and cirrhotic liver samples of clinically verified patients were obtained and total 900 Regions of Interest (ROIs) were taken from the selected data. Training of the classes was next step after texture parameter computation. In this work, supervised classification method was used to classify the selected images. In this way, the classes were trained in a supervised manner. The maximum accuracy obtained during this research work was 100%, linear dimensionality was 1 and the linear separability was 0.99%. Results of this research work suggested that texture parameters have high degree of reliability to automatically discriminate similar tissue textures, when regions are obvious. This framework separates benign from malignant liver tumors with moderately high precision and is therefore link up the psychophysics with machine vision to outline, recognize, categorize or discriminate textures.

Publisher

Mehran University of Engineering and Technology

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3