Role of FCBF Feature Selection in Educational Data Mining

Author:

Zaffar Maryam1,Hashmani Manzoor Ahmad2,Savita K.S.3,Rizvi Syed Sajjad Hussain4,Rehman Mubashar5

Affiliation:

1. Department of Computer and Information Sciences, Universiti Teknologi Petronas, Malaysia.

2. High Performance Cloud Computing Centre, Universiti Teknologi Petronas, Malaysia.

3. Centre for Research in Data Science, Universiti Teknologi, Malaysia.

4. Shaheed Zulfiqar Ali Bhutto Institute of Science and Technology, Karachi, Pakistan.

5. Faculty of Information and Communication Technology, Universiti Tunku Abdul Rahman, Malaysia.

Abstract

The Educational Data Mining (EDM) is a very vigorous area of Data Mining (DM), and it is helpful in predicting the performance of students. Student performance prediction is not only important for the student but also helpful for academic organization to detect the causes of success and failures of students. Furthermore, the features selected through the students’ performance prediction models helps in developing action plans for academic welfare. Feature selection can increase the prediction accuracy of the prediction model. In student performance prediction model, where every feature is very important, as a neglection of any important feature can cause the wrong development of academic action plans. Moreover, the feature selection is a very important step in the development of student performance prediction models. There are different types of feature selection algorithms. In this paper, Fast Correlation-Based Filter (FCBF) is selected as a feature selection algorithm. This paper is a step on the way to identifying the factors affecting the academic performance of the students. In this paper performance of FCBF is being evaluated on three different student’s datasets. The performance of FCBF is detected well on a student dataset with greater no of features.

Publisher

Mehran University of Engineering and Technology

Subject

General Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3