Affiliation:
1. National Chengchi University , Taipei
Abstract
Abstract
The Boltzmann–Gibbs distribution is currently widely used in economic modeling. One of the applications is integrated with the DSGE (Dynamic Stochastic General Equilibrium) model. However, a question that arises concerns whether the Boltzmann–Gibbs distribution can be directly applied, without considering the underlying social network structure more seriously, even though the social network structure is an important factor of social interaction. Therefore, this paper proposes two kinds of agent-based DSGE models. The first one belongs to mesoscopic modeling in formulating the social interaction with the Boltzmann–Gibbs machine, and the other one belongs to microscopic modeling in that it is augmented by the network-based ant machine. By comparing the population dynamics generated by those different agent-based DSGE models, we find that the Boltzmann–Gibbs machine offers a good approximation of herding behavior. However, it is difficult to envisage the population dynamics produced by the Boltzmann–Gibbs machine and by the network-based ant machine as having the same distribution, particularly in popular empirical network structures such as small world networks and scale-free networks. Thus, the social interaction behavior may not be replaced by the Boltzmann–Gibbs distribution.
Subject
General Economics, Econometrics and Finance
Reference40 articles.
1. Aiello,W., F. Chung, and L. Lu (2002). Random evolution of massive graphs. In J. Abello, P. M. Pardalos, and M. G. C. Resende (Eds.), Handbook of massive data sets (pp. 97–122). Dordrecht: Kluwer.
2. Albert, R., H. Jeong, and A.-L. Barabási (1999). Diameter of the world-wide Web. Nature 401:130–131. URL:http://nd.edu/~networks/Publication%20Categories/03%20Journal%20Articles/Computer/Diameter_Nature%20401,%20130-131%20%281999%29.pdf.
3. Alfarano, S., and M. Milakovic (2009). Network structure and N-dependence in agent-based herding models. Journal of Economic Dynamics and Control 33:78–92. URL: http://ideas.repec.org/a/eee/dyncon/v33y2009i1p78-92.html.
4. Alfarano, S., M. Milakovic, and M. Raddant (2009). Network hierarchy in Kirman’s ant model: Fund investment can create systemic risk. Working Paper. URL: http://www.economics.uni-kiel.de/gwif/files/papers/alfamilarad_core.pdf.
5. Assenza, T., P. Heemeijer, C. Hommes, and D. Massaro (2009). Experimenting with expectations: From individual behavior in the Lab to aggregate macro behavior. Working Paper. URL: http://www6.unicatt.it/Dotnetnuke/LinkClick.aspx?fileticket=0mUhMrRe0Q8%3D&tabid=1326.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献